Mock exam multivariable analysis Jan 2020

Exercise 1

a. Prove that the intersection of two linear subspaces of dimension $(n-1)$ in \mathbb{R}^{n} cannot be a single point when $n>2$.
b. Suppose that for a C^{1}-differentiable $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{2}$ we have $f^{-1}(\{0\})=\left\{e_{1}\right\}$. Can $f^{\prime}\left(e_{1}\right)$ have a two-dimensional image?
c. Prove that the system of ordinary differential equations $x^{\prime}(t)=y(t) x(t)$ and $y^{\prime}(t)=x(t)+2 y(t)$ for real valued functions x, y has a solution such that $x(0)=y(0)=10$.

Exercise 2

a. Prove that if $f, g: P \rightarrow P$ are two contractions on $P \subset \mathbb{R}^{n}$ then so is their composition $g \circ f$.
b. Suppose $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{n}$ is a C^{1} function such that the directional derivatives $\partial_{w}(0)$ are zero for all vectors $w \in \mathbb{R}^{n}$ such that $e^{1}(w)=29$. Show that $f^{\prime}(0)=0$.
c. Prove that if $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{3}$ is differentiable and satisfies $f(0)=0$ then $\frac{\left|f^{\prime}(0) h-f(h)\right|}{|h|}$ converges to 0 as h converges to 0 .

Exercise 3

a. Find two different 2 -cubes γ, δ in \mathbb{R}^{4} with equal boundary.
b. Prove or give a counter example: For any γ, δ as above and all $\omega \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ we have $\int_{\gamma} \omega=\int_{\delta} \omega$.
c. Suppose $S \subset \mathbb{R}^{n}$ is star-shaped and $T \subset \mathbb{R}^{n}$ is not star-shaped. Imagine a $C^{1} \operatorname{map} T \xrightarrow{f} S$ and $\omega \in \Omega^{k}(S)$ such that $d \omega=0$, prove that there exists an $\alpha \in \Omega^{k-1}(T)$ such that $d \alpha=f^{*} \omega$

Exercise 4

a. Compute $\int_{\partial I^{k}} \omega$, where $\omega \in \Omega^{k-1}\left(\mathbb{R}^{k}\right)$ is defined by $x^{k} d x^{1} \wedge \cdots \wedge d x^{k-1}$.
b. Compute $F^{*} \omega$ where F is a C^{1} function on $[0,1]^{k}$ with values in $[0,1]^{k} \times\{0\}$.
c. Show there cannot be a C^{1} function $[0,1]^{k} \xrightarrow{F}[0,1]^{k}$ such that $\partial I^{k}=\partial F$ and the image of F is in $[0,1]^{k} \times\{0\}$. hint: Compare $\int_{\partial I^{k}} \omega$ to $\int_{\partial I^{k}} F^{*} \omega$.

Solutions

Exercise 1

a. Prove that the intersection of two linear subspaces of dimension $(n-1)$ in \mathbb{R}^{n} cannot be a single point, when $n>2$.
If the intersection is a single point that must be $\{0\}$. Choose a basis $a_{1}, \ldots a_{n-1}$ and $b_{1}, \ldots b_{n-1}$ for each of the two subspaces A and B. Any linear relation between the a 's and the b 's must involve at least one a and at least one b because the a 's and the b 's are bases of A and B. But such a linear relation would then allow us to express a combination of a's in terms of a combination of b's which means those combinations are a non-zero vector in the intersection $A \cap B=\{0\}$. Therefore no such relation exists and we found $2 n-2$ independent vectors in \mathbb{R}^{n}, which is absurd if $n>2$.
b. Suppose that for a C^{1}-differentiable $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{2}$ we have $f^{-1}(\{0\})=\left\{e_{1}\right\}$. Can $f^{\prime}\left(e_{1}\right)$ have a two-dimensional image?

If the image is two-dimensional then there must exist $i \neq j$ such that $f^{\prime}\left(e_{1}\right) e_{i}$ and $f^{\prime}\left(e_{1}\right) e_{j}$ $\operatorname{span} \mathbb{R}^{2}$. After permuting the coordinates we may assume that $i=n-1$ and $j=n$. Then we may apply the implicit function theorem to the map $\mathbb{R}^{n-2} \times \mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2}$ with $f\left(x_{0}, y_{0}\right)=z_{0}$ and $\left(x_{0}, y_{0}\right)=(1,0,0, \ldots, 0)$ and $z_{0}=(0,0)$. The condition that $F(y)=f\left(x_{0}, y\right)$ has invertible derivative $F^{\prime}(0)$ is satisfied because $F^{\prime}(0) e_{1}=f^{\prime}\left(e_{1}\right) e_{n-1}$ and $F^{\prime}(0) e_{2}=f^{\prime}\left(e_{1}\right) e_{n}$ span \mathbb{R}^{2}. The conclusion is that there is an open subset $N \subset \mathbb{R}^{n-2}$ containing e_{1} with a C^{1} function $N \xrightarrow{g} M$ such that $f_{-1}(\{0\})$ is locally the graph of g near point e_{1}. This contradicts our assumption that $f^{-1}(\{0\})$ is a single point.
c. Prove that the system of ordinary differential equations $x^{\prime}(t)=y(t) x(t)$ and $y^{\prime}(t)=x(t)+2 y(t)$ for real valued functions x, y has a solution such that $x(0)=y(0)=10$.
Define the vector field $\mathbb{R}^{2} \xrightarrow{F} \mathbb{R}^{2}$ by $F(x, y)=(y x, x+2 y)$. This is clearly a C^{1} function because the partial derivatives exist and are polynomials, hence continuous. The existence and uniqueness theorem for ordinary differential equations (Picard) says that there exists and integral curve $(-a, a) \xrightarrow{\gamma} \mathbb{R}^{2}$ with $\gamma(0)=(10,10)$. This means that $\gamma^{\prime}(t)=F(\gamma(t))$ for all $t \in(-a, a)$ and writing $\gamma(t)=(x(t), y(t))$ we see that γ is the desired solution to the differential equation.

Exercise 2

a. Prove that if $f, g: P \rightarrow P$ are two contractions on $P \subset \mathbb{R}^{n}$ then so is their composition $g \circ f$. There exist $\alpha, \beta \in(0,1)$ such that for all $x, y \in P$ we have $|f(x)-f(y)|<\alpha|x-y|$ and $|g(x)-g(y)|<\beta|x-y|$. Therefore $|g(f(x))-g(f(y))|<\beta|f(x)-f(y)|<\alpha \beta|x-y|$.
b. Suppose $\mathbb{R}^{n} \xrightarrow{f} \mathbb{R}^{n}$ is a C^{1} function such that the directional derivatives $\partial_{w}(0)$ are zero for all vectors $w \in \mathbb{R}^{n}$ such that $e^{1}(w)=29$. Show that $f^{\prime}(0)=0$.
We have $\partial_{w}(0)=f^{\prime}(0) w$ by the chain rule applied to the function $t \mapsto t+w$ composed with f. The set of vectors w with $e^{1}(w)=29$ spans \mathbb{R}^{n} so $f^{\prime}(0) w=0$ for all these vectors implies $f^{\prime}(0) v=0$ for all vectors because $f^{\prime}(0)$ is linear.
c. Prove that if $\mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{3}$ is differentiable and satisfies $f(0)=0$ then $\frac{\left|f^{\prime}(0) h-f(h)\right|}{|h|}$ converges to 0 as h converges to 0 .
By definition of the derivative $f^{\prime}(0)$ we have $\lim _{h \rightarrow 0} \frac{\left|f(0+h)-f(0)-f^{\prime}(0) h\right|}{|h|}=0$ since that is equivalent to the error $\epsilon_{f, 0}(h)$ being $o(h)$.

Exercise 3

a. Find two different 2 -cubes γ, δ in \mathbb{R}^{4} with equal boundary.

Take $\gamma(s, t)=(s, t, 0,0)$ and $\delta(s, t)=(s, t, s t(s-1)(t-1), 0)$. Since $s t(s-1)(t-1)$ is 0 whenever either s or t is in $\{0,1\}$ we have $\gamma_{i, \sigma}=\delta_{i, \sigma}$. This implies $\partial \gamma=\partial \delta$.
b. Prove or give a counter example: For any γ, δ as above and all $\omega \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ we have $\int_{\gamma} \omega=$ $\int_{\delta} \omega$. This is not true. Choose δ and γ as above and $\omega=z d x \wedge d y$. Then $\delta^{\prime}(s, t) e_{1}=$ $(1,0, t(t-1)(2 s-1))$ and $\delta^{\prime}(s, t) e_{2}=(1,0,(2 t-1) s(s-1))$. Therefore $\delta^{\prime}(s, t)^{*} e^{1}=e^{1}$ and $\delta^{\prime}(s, t)^{*} e^{2}=e^{2}$, in other words $\delta^{\prime}(s, t)^{*} d x=d s$ and $\delta^{\prime}(s, t)^{*} d y=d t$. Therefore $\delta^{*} \omega(s, t)=$ $\delta^{\prime}(s, t)^{*} \omega=s t(s-1)(t-1) d s \wedge d t$ and so $\int_{\delta} \omega=\int_{I^{2}} \delta^{*} \omega=\int_{(s, t) \in[0,1]^{2}} s t(s-1)(t-1)=1 / 36$. The other integral $\int_{\gamma} \omega$ is zero since $e^{3}(\gamma(s, t))=0$ for all s, t, which means $\gamma^{*} \omega=0$ as well.
c. Suppose $S \subset \mathbb{R}^{n}$ is star-shaped and $T \subset \mathbb{R}^{n}$ is not star-shaped. Imagine a $C^{1} \operatorname{map} T \xrightarrow{f} S$ and $\omega \in \Omega^{k}(S)$ such that $d \omega=0$, prove that there exists an $\alpha \in \Omega^{k-1}(T)$ such that $d \alpha=f^{*} \omega$ By the Poincaré lemma we find a k-1-form η on S such that $d \eta=\omega$. The pull-back $\alpha=f^{*} \eta$ is a $k-1$-form on T such that $d \alpha=d f^{*} \eta=f^{*} d \eta=f^{*} \omega$.

Exercise 4

a. Compute $\int_{\partial I^{k}} \omega$, where $\omega \in \Omega^{k-1}\left(\mathbb{R}^{k}\right)$ is defined by $x^{k} d x^{1} \wedge \cdots \wedge d x^{k-1}$. $d \omega=(-1)^{k-1} e^{(1,2, \ldots, k)}$ so by Stokes $\int_{\partial I^{k}} \omega=\int_{I^{k}} d \omega=(-1)^{k-1}$.
b. Compute $F^{*} \omega$ where F is a C^{1} function on $[0,1]^{k}$ with values in $[0,1]^{k} \times\{0\}$.
$F^{*} \omega(p)=F^{\prime}(p)^{*} \omega(F(p))=0$ because $\omega(F(p))=0$ for all $p \in[0,1]^{k}$ as we should set the k-th coordinate to 0 .
c. Show there cannot be a C^{1} function $[0,1]^{k} \xrightarrow{F}[0,1]^{k}$ such that $\partial I^{k}=\partial F$ and the image of F is in $[0,1]^{k} \times\{0\}$. hint: Compare $\int_{\partial I^{k}} \omega$ to $\int_{\partial I^{k}} F^{*} \omega$.
If there were such a function then $0 \neq \int_{\partial I^{k}} \omega=\int_{\partial F} \omega=\int_{F} d \omega=\int_{I^{k}} F^{*} d \omega=\int_{I^{k}} d F^{*} \omega=$ $\int_{\partial I^{k}} F^{*} \omega=0$.

