
Mock exam multivariable analysis Jan 2020

Exercise 1

a. Prove that the intersection of two linear subspaces of dimension (n − 1) in Rn cannot be a
single point when n > 2.

b. Suppose that for a C1-differentiable Rn f−→ R2 we have f−1({0}) = {e1}. Can f ′(e1) have a
two-dimensional image?

c. Prove that the system of ordinary differential equations x′(t) = y(t)x(t) and y′(t) = x(t)+2y(t)
for real valued functions x, y has a solution such that x(0) = y(0) = 10.

Exercise 2

a. Prove that if f, g : P → P are two contractions on P ⊂ Rn then so is their composition g ◦ f .

b. Suppose Rn f−→ Rn is a C1 function such that the directional derivatives ∂w(0) are zero for all
vectors w ∈ Rn such that e1(w) = 29. Show that f ′(0) = 0.

c. Prove that if R2 f−→ R3 is differentiable and satisfies f(0) = 0 then |f
′(0)h−f(h)|
|h| converges to

0 as h converges to 0.

Exercise 3

a. Find two different 2-cubes γ, δ in R4 with equal boundary.

b. Prove or give a counter example: For any γ, δ as above and all ω ∈ Ω2(R4) we have
∫
γ
ω =

∫
δ
ω.

c. Suppose S ⊂ Rn is star-shaped and T ⊂ Rn is not star-shaped. Imagine a C1 map T
f−→ S

and ω ∈ Ωk(S) such that dω = 0, prove that there exists an α ∈ Ωk−1(T ) such that dα = f∗ω

Exercise 4

a. Compute
∫
∂Ik

ω, where ω ∈ Ωk−1(Rk) is defined by xkdx1 ∧ · · · ∧ dxk−1.

b. Compute F ∗ω where F is a C1 function on [0, 1]k with values in [0, 1]k × {0}.

c. Show there cannot be a C1 function [0, 1]k
F−→ [0, 1]k such that ∂Ik = ∂F and the image of F

is in [0, 1]k × {0}. hint: Compare
∫
∂Ik

ω to
∫
∂Ik

F ∗ω.
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Solutions

Exercise 1

a. Prove that the intersection of two linear subspaces of dimension (n − 1) in Rn cannot be a
single point, when n > 2.
If the intersection is a single point that must be {0}. Choose a basis a1, . . . an−1 and b1, . . . bn−1
for each of the two subspaces A and B. Any linear relation between the a’s and the b’s must
involve at least one a and at least one b because the a’s and the b’s are bases of A and B.
But such a linear relation would then allow us to express a combination of a’s in terms of a
combination of b’s which means those combinations are a non-zero vector in the intersection
A ∩ B = {0}. Therefore no such relation exists and we found 2n − 2 independent vectors in
Rn, which is absurd if n > 2.

b. Suppose that for a C1-differentiable Rn f−→ R2 we have f−1({0}) = {e1}. Can f ′(e1) have a
two-dimensional image?

If the image is two-dimensional then there must exist i 6= j such that f ′(e1)ei and f ′(e1)ej
span R2. After permuting the coordinates we may assume that i = n−1 and j = n. Then we

may apply the implicit function theorem to the map Rn−2×R2 f−→ R2 with f(x0, y0) = z0 and
(x0, y0) = (1, 0, 0, . . . , 0) and z0 = (0, 0). The condition that F (y) = f(x0, y) has invertible
derivative F ′(0) is satisfied because F ′(0)e1 = f ′(e1)en−1 and F ′(0)e2 = f ′(e1)en span R2.
The conclusion is that there is an open subset N ⊂ Rn−2 containing e1 with a C1 function

N
g−→ M such that f−1({0}) is locally the graph of g near point e1. This contradicts our

assumption that f−1({0}) is a single point.

c. Prove that the system of ordinary differential equations x′(t) = y(t)x(t) and y′(t) = x(t)+2y(t)
for real valued functions x, y has a solution such that x(0) = y(0) = 10.

Define the vector field R2 F−→ R2 by F (x, y) = (yx, x + 2y). This is clearly a C1 function
because the partial derivatives exist and are polynomials, hence continuous. The existence
and uniqueness theorem for ordinary differential equations (Picard) says that there exists

and integral curve (−a, a)
γ−→ R2 with γ(0) = (10, 10). This means that γ′(t) = F (γ(t)) for

all t ∈ (−a, a) and writing γ(t) = (x(t), y(t)) we see that γ is the desired solution to the
differential equation.

Exercise 2

a. Prove that if f, g : P → P are two contractions on P ⊂ Rn then so is their composition g ◦ f .
There exist α, β ∈ (0, 1) such that for all x, y ∈ P we have |f(x) − f(y)| < α|x − y| and
|g(x)− g(y)| < β|x− y|. Therefore |g(f(x))− g(f(y))| < β|f(x)− f(y)| < αβ|x− y|.

b. Suppose Rn f−→ Rn is a C1 function such that the directional derivatives ∂w(0) are zero for all
vectors w ∈ Rn such that e1(w) = 29. Show that f ′(0) = 0.
We have ∂w(0) = f ′(0)w by the chain rule applied to the function t 7→ t+ w composed with
f . The set of vectors w with e1(w) = 29 spans Rn so f ′(0)w = 0 for all these vectors implies
f ′(0)v = 0 for all vectors because f ′(0) is linear.
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c. Prove that if R2 f−→ R3 is differentiable and satisfies f(0) = 0 then |f
′(0)h−f(h)|
|h| converges to

0 as h converges to 0.

By definition of the derivative f ′(0) we have limh→0
|f(0+h)−f(0)−f ′(0)h|

|h| = 0 since that is

equivalent to the error εf,0(h) being o(h).

Exercise 3

a. Find two different 2-cubes γ, δ in R4 with equal boundary.
Take γ(s, t) = (s, t, 0, 0) and δ(s, t) = (s, t, st(s − 1)(t − 1), 0). Since st(s − 1)(t − 1) is 0
whenever either s or t is in {0, 1} we have γi,σ = δi,σ. This implies ∂γ = ∂δ.

b. Prove or give a counter example: For any γ, δ as above and all ω ∈ Ω2(R4) we have
∫
γ
ω =∫

δ
ω. This is not true. Choose δ and γ as above and ω = zdx ∧ dy. Then δ′(s, t)e1 =

(1, 0, t(t − 1)(2s − 1)) and δ′(s, t)e2 = (1, 0, (2t − 1)s(s − 1)). Therefore δ′(s, t)∗e1 = e1 and
δ′(s, t)∗e2 = e2, in other words δ′(s, t)∗dx = ds and δ′(s, t)∗dy = dt. Therefore δ∗ω(s, t) =
δ′(s, t)∗ω = st(s− 1)(t− 1)ds∧ dt and so

∫
δ
ω =

∫
I2
δ∗ω =

∫
(s,t)∈[0,1]2 st(s− 1)(t− 1) = 1/36.

The other integral
∫
γ
ω is zero since e3(γ(s, t)) = 0 for all s, t, which means γ∗ω = 0 as well.

c. Suppose S ⊂ Rn is star-shaped and T ⊂ Rn is not star-shaped. Imagine a C1 map T
f−→ S

and ω ∈ Ωk(S) such that dω = 0, prove that there exists an α ∈ Ωk−1(T ) such that dα = f∗ω
By the Poincaré lemma we find a k−1-form η on S such that dη = ω. The pull-back α = f∗η
is a k − 1-form on T such that dα = df∗η = f∗dη = f∗ω.

Exercise 4

a. Compute
∫
∂Ik

ω, where ω ∈ Ωk−1(Rk) is defined by xkdx1 ∧ · · · ∧ dxk−1.

dω = (−1)k−1e(1,2,...,k) so by Stokes
∫
∂Ik

ω =
∫
Ik
dω = (−1)k−1.

b. Compute F ∗ω where F is a C1 function on [0, 1]k with values in [0, 1]k × {0}.
F ∗ω(p) = F ′(p)∗ω(F (p)) = 0 because ω(F (p)) = 0 for all p ∈ [0, 1]k as we should set the k-th
coordinate to 0.

c. Show there cannot be a C1 function [0, 1]k
F−→ [0, 1]k such that ∂Ik = ∂F and the image of F

is in [0, 1]k × {0}. hint: Compare
∫
∂Ik

ω to
∫
∂Ik

F ∗ω.
If there were such a function then 0 6=

∫
∂Ik

ω =
∫
∂F
ω =

∫
F
dω =

∫
Ik
F ∗dω =

∫
Ik
dF ∗ω =∫

∂Ik
F ∗ω = 0.

3


